parted

parted命令是由GNU组织开发的一款功能强大的磁盘分区和分区大小调整工具,与fdisk不同,它支持调整分区的大小。作为一种设计用于Linux的工具,它没有构建成处理与fdisk关联的多种分区类型,但是,它可以处理最常见的分区格式,包括:ext2、ext3、fat16、fat32、NTFS、ReiserFS、JFS、XFS、UFS、HFS以及Linux交换分区。

语法

parted(选项)(参数)

选项

-h:显示帮助信息;
-i:交互式模式;
-s:脚本模式,不提示用户;
-v:显示版本号。

参数

  • 设备:指定要分区的硬盘所对应的设备文件;
  • 命令:要执行的parted命令。

实例

从串行技术出现以来,越来越多用户选择使用大容量的SATA硬盘创建磁盘阵列;特别是MD1000/MD3000,很轻易就突破2T的LUN,故在此给大家一些指引。

红帽企业 Linux 4 Update 4供对大于 2 terabytes(TB)的磁盘设备的支持。

请参考以下操作步骤:

注:

  • 绿色代表你需要使用的命令。
  • 红色代表你需要注意到的输出信息,在后续需要使用。
[root@localhost ~]# fdisk -l
Disk /dev/sda: 35.8 GB, 35862976512 bytes
255 heads, 63 sectors/track, 4360 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
   Device Boot      Start         End      Blocks   id  System
/dev/sda1   *           1          13      104391   83  Linux
/dev/sda2              14         144     1052257+  82  Linux swap
/dev/sda3             145        4360    33865020   83  Linux
Disk /dev/sdb: 2147 MB, 2147483648 bytes
255 heads, 63 sectors/track, 261 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk /dev/sdb doesn't contain a valid partition table
[root@localhost ~]# parted /dev/sdb
GNU Parted Copyright (C) 1998 - 2004 free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.  See the GNU General Public License for more details.
使用/dev/sdb
(parted)mklabel gpt
(parted)print
/dev/sdb的磁盘几何结构:0.000-2048.000兆字节
磁盘标签类型:gpt
Minor   起始点       终止点 文件系统   名称                 标志
(parted)mkpart primary 0 2048  <-----上面print显示的数字
(parted)print
/dev/sdb的磁盘几何结构:0.000-2048.000兆字节
磁盘标签类型:gpt
Minor   起始点       终止点 文件系统   名称                 标志
1          0.017   2047.983
(parted)quit

如果必要,不要忘记更新/etc/fstab

[root@localhost ~]# fdisk -l
Disk /dev/sda: 35.8 GB, 35862976512 bytes
255 heads, 63 sectors/track, 4360 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1          13      104391   83  Linux
/dev/sda2              14         144     1052257+  82  Linux swap
/dev/sda3             145        4360    33865020   83  Linux
WARNING: GPT (GUID Partition Table) detected on '/dev/sdb'! The util fdisk doesn't support GPT. Use GNU Parted.
 
Disk /dev/sdb: 2147 MB, 2147483648 bytes
255 heads, 63 sectors/track, 261 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1         262     2097151+  ee  EFI GPT
Partition 1 has different physical/logical beginnings (non-Linux?):
     phys=(0, 0, 1) logical=(0,0, 2)
Partition 1 has different physical/logical endings:
     phys=(1023, 254, 63) logical=(261, 21, 16)
[root@localhost ~]# mkfs.ext3 /dev/sdb1
mke2fs 1.35 (28-Feb-2004)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
262144 inodes, 524279 blocks
26213 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=536870912
16 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first.  Use tune2fs -c or -i to override.
[root@localhost ~]# mount /dev/sdb1 /mnt
[root@localhost ~]# df -h
Filesystem            容量  已用 可用 已用% 挂载点
/dev/sda3              <?xml:namespace prefix = st1 />32G  2.6G   28G   9% /
/dev/sda1              99M   12M   82M  13% /boot
none                  252M     0  252M   0% /dev/shm
/dev/sdb1             2.0G   36M  1.9G   2% /mnt

df

df命令用于显示磁盘分区上的可使用的磁盘空间。默认显示单位为KB。可以利用该命令来获取硬盘被占用了多少空间,目前还剩下多少空间等信息。

语法

df(选项)(参数)

选项

-a或--all:包含全部的文件系统;
--block-size=<区块大小>:以指定的区块大小来显示区块数目;
-h或--human-readable:以可读性较高的方式来显示信息;
-H或--si:与-h参数相同,但在计算时是以1000 Bytes为换算单位而非1024 Bytes;
-i或--inodes:显示inode的信息;
-k或--kilobytes:指定区块大小为1024字节;
-l或--local:仅显示本地端的文件系统;
-m或--megabytes:指定区块大小为1048576字节;
--no-sync:在取得磁盘使用信息前,不要执行sync指令,此为预设值;
-P或--portability:使用POSIX的输出格式;
--sync:在取得磁盘使用信息前,先执行sync指令;
-t<文件系统类型>或--type=<文件系统类型>:仅显示指定文件系统类型的磁盘信息;
-T或--print-type:显示文件系统的类型;
-x<文件系统类型>或--exclude-type=<文件系统类型>:不要显示指定文件系统类型的磁盘信息;
--help:显示帮助;
--version:显示版本信息。

参数

文件:指定文件系统上的文件。

实例

查看系统磁盘设备,默认是KB为单位:

[root@LinServ-1 ~]# df
文件系统               1K-块        已用     可用 已用% 挂载点
/dev/sda2            146294492  28244432 110498708  21% /
/dev/sda1              1019208     62360    904240   7% /boot
tmpfs                  1032204         0   1032204   0% /dev/shm
/dev/sdb1            2884284108 218826068 2518944764   8% /data1

使用-h选项以KB以上的单位来显示,可读性高:

[root@LinServ-1 ~]# df -h
文件系统              容量  已用 可用 已用% 挂载点
/dev/sda2             140G   27G  106G  21% /
/dev/sda1             996M   61M  884M   7% /boot
tmpfs                1009M     0 1009M   0% /dev/shm
/dev/sdb1             2.7T  209G  2.4T   8% /data1

查看全部文件系统:

[root@LinServ-1 ~]# df -a
文件系统               1K-块        已用     可用 已用% 挂载点
/dev/sda2            146294492  28244432 110498708  21% /
proc                         0         0         0   -  /proc
sysfs                        0         0         0   -  /sys
devpts                       0         0         0   -  /dev/pts
/dev/sda1              1019208     62360    904240   7% /boot
tmpfs                  1032204         0   1032204   0% /dev/shm
/dev/sdb1            2884284108 218826068 2518944764   8% /data1
none                         0         0         0   -  /proc/sys/fs/binfmt_misc

lilo

lilo命令用于安装核心载入,开机管理程序。lilo是个Linux系统核心载入程序,同时具备管理开机的功能。单独执行lilo指令,它会读取/etc/lilo.conf配置文件,然后根据其内容安装lilo。

Linux lilo已经成为所有 Linux 发行版的标准组成部分。作为一个 较老的/最老的 Linux 引导加载程序,它那不断壮大的 Linux 社区支持使它能够随时间的推移而发展,并始终能够充当一个可用的现代引导加载程序。有一些新的功能,比如增强的用户界面,以及对能够突破原来 1024-柱面限制的新 BIOS 功能的利用。

虽然 LILO 仍在不断地发展,但 LILO 工作原理的基本概念保持不变。

语法

lilo(选项)

选项

-b<外围设备代号>:指定安装lilo之处的外围设备代号;
-c:使用紧致映射模式;
-C<配置文件>:指定lilo的配置文件;
-d<延迟时间>:设置开机延迟时间;
-D<识别标签>:指定开机后预设启动的操作系统,或系统核心识别标签;
-f<几何参数文件>:指定磁盘的几何参数配置文件;
-i<开机磁区文件>:指定欲使用的开机磁区文件,预设是/boot目录里的boot.b文件;
-I<识别标签>:显示系统核心存放之处;
-l:产生线形磁区地址;
-m<映射文件>:指定映射文件;
-P<fix/ignore>:决定要修复或忽略分区表的错误;
-q:列出映射的系统核心文件;
-r<根目录>:设置系统启动时欲挂入成为根目录的目录;
-R<执行指令>:设置下次启动系统时,首先执行的指令;
-s<备份文件>:指定备份文件;
-S<备份文件>:强制指定备份文件;
-t:不执行指令,仅列出实际执行会进行的动作;
-u<外围色设备代号>:删除lilo;
-U<外围设备代号>:此选项的效果和指定"-u"参数类似,当不检查时间戳记;
-v:显示指令执行过程;
-V:显示版本信息。

实例

使用 LILO 作为引导加载程序

要使用 LILO 作为引导加载程序,需要做的事情取决于是要进行全新安装还是要让已经安装的 Linux 改为使用 LILO。如果是要进行全新安装,那么直接跳转到 配置 LILO 那一节。如果已经安装了某个 Linux 发行版,那么通常可以选择安装并配置 LILO(并可以将机器引导到新的 Linux 安装)。

要将现有的 Linux 迁移到 LILO,首先必须获得最新版本的 LILO(见 参考资料)。在做任何其他事情之前,建议您确保在手边拥有一张 Linux 引导盘 —— 如果偶而弄错了某些地方,它可以提供很大的帮助,能够恢复到初始的 Linux 配置!将 LILO 安装到系统中之后,让它接管 MBR 非常简单。以 root 用户身份输入:

/sbin/lilo -v -v

这将使用当前的 LILO 默认值,抹去 MBR 中当前所有内容。不过,请阅读 配置 LILO,以确保能够按预期引导起来。也要注意,如果想要在同一机器上运行 Windows 和 Linux,那么应该先安装 Windows OS,然后再安装 Linux OS,这样,在 Linux 安装中所选择的引导加载程序就不会被 Windows 引导加载程序所覆盖。与 Linux 引导加载程序不同,多数 Window 引导加载程序不支持引导 Linux。如果已经先安装了 Linux,那么只需要自己创建一张 Linux 引导盘,这样就可以在安装完 Windows 之后,回到 Linux 安装中并重写 MBR。

配置 LILO

LILO 的配置都是通过位于 /etc/lilo.conf 的一个配置文件来完成的。清单 1 给出了一个示例配置,使用的是我的家用机器,支持 Linux 和 Windows 机器的双重引导。了解我的工作站的基本配置,就可以想像出这些配置是如何与实际机器相关联的:

主 HDD(物理磁盘 1)上安装了 Windows XP(最初机器上只有它)。在 Linux 术语中,这个 HDD 是 /dev/hda(在 grub 术语中是 hd0,0)。

从 HDD(物理磁盘 2)上安装了 Red Hat Linux;root 分区位于这个硬盘驱动器的第三个分区,即 /dev/hdb3(在 GRUB 术语中是 hd1,3)。

lilo.conf 示例文件:

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=100
compact
default=Linux
image=/boot/vmlinuz-2.4.18-14
	label=Linux
	root=/dev/hdb3
	read-only
	password=linux
other=/dev/hda
	label=WindowsXP

配置文件选项说明:

  • boot= 行告诉 LILO 在哪里安装引导加载程序。在上面的示例中,将把它安装到第一块硬盘的 MBR。也可以选择将 LILO 安装到 /dev/hdb3(示例中的 Linux 分区),这样需要向 /dev/hda 安装另一个引导加载程序,并令其指向 LILO 引导加载程序;然后只需要让 LILO 作为二级引导加载程序。通常,引导加载程序应该位于 /dev/hda。还可以将这个参数指向软盘驱动器(最常见的是 /dev/fd0),来制做 LILO 软盘引导磁盘。
  • map= 指向引导期间 LILO 内部使用的映射文件。当使用 /sbin/lilo 命令安装 LILO 时, 它会自动生成这个文件,其中包含有描述符表(还有其他内容)。建议不要改动这个文件!
  • install= 是 LILO 在引导过程中内部使用的文件之一。它同时包含有引导加载程序的主要部分和二级部分。boot.b 文件的 一个片段被写入到 MBR(引导加载程序的主要部分),它会指向那个映射,接下来指向二级引导加载程序。同样,不要改动它!
  • prompt= 告诉 LILO 使用用户界面(本例中给出了两个选择 —— Linux 和 WindowsXP)。除了使用 prompt/user 界面以外,在适当情况下还可以为 Linux 内核等指定具体的参数。如果不在配置文件中指定此选项,那么 LILO 将引导到 默认的 OS,不发生任何用户交互,也不会等待。(但是请注意,如果在引导时按下了 SHIFT,那么还是可以得到提示,当不想把 引导加载程序暴露给普通用户时,这非常有用)。
  • timeout= 是引导提示在自动引导默认 OS(本例中是 Linux)之前的等待时间(以十分之一秒为单位)。 如果在 lilo.conf 没有指定 prompt,那么这个参数就会被忽略。
  • compact 选项可以大大加速引导过程,它会将连续的读磁盘的请求合并为一个单独的请求。不过,这可能是 一件祸福参半的事情,因为我在论坛上看到过很多贴子提到了关于此选项的问题。当希望从软盘引导时,这个选项尤其有用。
  • default= 选项告诉 LILO 默认使用哪个映像进行引导,比如在等待超时之后。这与 lilo.conf 文件中的某个映像的 标签相关联。如果没有在配置文件中指定此选项,那么它将引导文件中指定的第一个映像。
  • 对于允许用户引导到的每一个 Linux 版本,都应该指定 image= 及以下三个选项。image 选项指定希望 引导到的内核版本。
  • label= 标明了在运行期间希望能够从用户界面引导的不同 OS。另外,这个标签用于指定引导的默认 OS。 (注意:标签名称中避免出现空格;否则,引导那个文件时会出现无法预期的错误。)
  • root= 告诉 LILO OS 文件系统实际所在的位置。在我们的示例中为 /dev/hdb3,即第二块硬盘上的第三个分区。
  • read-only 告诉 LILO 以只读的方式初始引导到文件系统。OS 一旦完全引导起来,就会以读写方式挂载。
  • password= 允许您为将要引导到的特定 OS 设置口令。不幸的是,这个口令是以可读文本的方式保存在 lilo.conf 文件中,所以,所有人都能够读取它。如果需要,还可以对想要引导自的每个操作系统设置口令(在我们的示例中,只为 Linux 的引导 设置了一个口令)。
  • other= 的动作类似于 image 和 root 选项的组合,但是用于除了 Linux 以外的其他操作系统。 在我们的示例中,它告诉 LILO 到哪里去找到 Windows OS(位于第一块硬盘的第一个分区)。如果先安装 Windows,后安装 Linux,通常会是这样。
  • label= 与所有其他 label 选项相同。

在 lilo.conf 文件中可以使用很多其他参数,不过清单 1 中的参数就足以让机器可用了。要获得关于 lilo.conf 的这些以及其他参数的 进一步资料,请参考手册页(man lilo.conf)。由于在引导时不会读取 lilo.conf,所以,当这个文件有改动时,需要“更新”MBR。 如果不完成此步骤就重新引导,那么对 lilo.conf 的修改不会在启动中反映出来。与先前将 LILO 写入 MBR 类似,需要运行:

/sbin/lilo -v -v

-v -v标记会为您给出非常详细的输出。当像我们那样运行 LILO 时,有很多参数可以指定。 参阅手册页以获得更进一步的信息(man lilo)。

初始引导过程

当 LILO 初始引导时,它会按次序打印出每个字母 —— L-I-L-O。如果所有字母都显示出来,那么第一阶段引导就成功了。缺少任何内容 都表示出现了问题:

L:第一阶段引导加载程序已经被加载。如果 LILO 停止在这里,那么是在引导第二阶段引导加载程序时出现了问题。这通常会伴随有一个错误代码。 在这个阶段的常见问题是介质问题,或者在 lilo.conf 文件中指定了不正确的磁盘参数。

LI:第二阶段引导加载程序已经被加载。LILO 在此处停止表示第二阶段引导加载程序不能被执行。同样,这可能是因为出现了与只显示 L 类似的问题: 正在加载,或者因 boot.b 文件被破坏、移动或删除而不能加载。

LIL:第二阶段引导加载程序正在被执行。此时,可能会再次出现介质问题,或者映射文件(如 lilo.conf 文件中所指定的)在寻找描述符表时 可能会出现问题。

LIL?:加载到与上面相同的阶段。这通常意味着加载第二阶段引导加载程序使用了错误的地址,最常见的原因是 boot.b 所在的位置与 lilo.conf 文件所指定的不同。

LIL-:加载到与上面相同的阶段。加载描述符表时出现问题,最常见的原因是描述符表错误。

LILO:LILO 成功被加载,没有出现任何错误。

引导时的附加配置

LILO 被成功加载后,将看到 LILO 提示符。还是使用前面的示例 lilo.conf 文件,此时将有两个选择,可能对 LILO 新手来说并不直观。首先,可以 让 LILO 超时(10 秒后),这将引导/dev/hdb3,即 Linux 分区。另外,可以按下 TAB 键,这将列出将要引导的操作系统选项。在我们的示例 lilo.conf 中, 将得到的选项是 “Linux” 和 “Windows”。输入哪一个,就会引导到哪个 OS。指定加载 Linux 选项,会提示输入一个口令,在本例中是 linux。如果输入的口令有误,则会返回 LILO 提示符。

不幸的是,LILO 不支持引导期间的交互式配置,所以,只能在 lilo.conf 中或者运行/sbin/lilo时指定选项。

关于第一次尝试 LILO 的最后一点建议是:我发现使用软盘引导磁盘比使用硬盘实现 LILO 配置更为安全。为此,必须在 lilo.conf 文件中使用boot=/dev/fd0替换boot=/dev/hda。那样,如果弄乱了lilo.conf文件 中的任何配置,都可以取出引导磁盘并像先前一样引导到 Linux。当使用软盘进行引导一切正常以后,可以将lilo.conf修改回boot=/dev/hda,然后最后一次运行/sbin/lilo来上传修改。

convertquota

convertquota命令用于将老的磁盘额数据文件(“quota.user”和“quota.group”)转换为新格式的文件(“quota.user”和“quota.group”)。

语法

convertquota(选项)(参数)

选项

-u:仅转换用户磁盘配额数据文件;
-g:仅转换组磁盘配额数据文件;
-f:将老的磁盘配额文件转换为新的格式;
-e:将新的文件格式从大字节序换为小字节序。

参数

文件系统:指定要转换磁盘配额数据文件格式的文件系统(硬盘分区)。

实例

使用convertquota指令转换指定文件系统/data的磁盘配额数据文件。在命令行中输入下面的命令:

convertquota -u /data     //转换文件系统"/data"上的用户磁盘配额文件

grub

grub命令是多重引导程序grub的命令行shell工具。

语法

grub(选项)

选项

--batch:打开批处理模式;
--boot-drive=<驱动器>:指定stage2的引导驱动器;
--config-file<配置文件>:指定stage2的配置文件;
--device-map=<文件>:指定设备的映射文件;
--help:显示帮助信息;
--install-partition=<分区>:指定stage2安装分区;
--no-config-file:不使用配置文件;
--no-pager:不使用内部分页器;
--preset-menu:使用预设菜单;
--probe-second-floppy:检测第二个软盘驱动器;
--read-only:只读模式。

实例

利用grub命令来启动损坏的Linux系统,可能你的电脑因为某些原因损坏不能自动启动了。当然原因很多,可能的现象也很多。

这里说一下这种情况下的处理方法,即:屏幕上提示grub>,但你的硬盘上数据没有丢失,各分区都是好的。这种情况是你的grub信息损坏了,但比较严重的是系统启动不了。

当然,在正常启动情况下,屏幕上出现grub的启动项选择菜单时按c键也是可以进入grub>状态的。这时候我们需要用grub的命令来手工启动系统。

只需要用到四个命令boot、kernel、initrd、boot。

但grub本身命令很多,比如查看文件内容的cat ,你输入help会得到。

首先,输入“ root (hd ” ,然后按两次 TAB 键; /* 这会列出你电脑上可能的磁盘设备,硬盘为 hd0/hd1 或 sd0/sd1 等 */

然后,选择你的安装 Linux 系统的硬盘,比如 hd0 ,输入 “ root (hd0, ” 再按两次 TAB 键; /* 这会列出你的第一块硬盘上的分区情况,你会知道哪个是 swap 交换分区, 0x82 ,哪个是 Linux 分区 0x83 */

选择你认为可能的 /boot 目录所在的分区, 输入root (hd0, 1)回车;

接着,输入cat /boot/vm, 按两次 TAB 键,如果出现一些 vm 开头的文件,比如 vmlinuz-2.6.15-26-386 说明这里是 /boot 所在的分区。

删除上一次的输入,再输入cat /boot/initrd,按两次 TAB 键,如果出现一些 initrd 开头的文件,比如 initrd.img-2.6.15-26-386 说明这个 /boot 所在的分区有 initrd ,即 ramdisk 镜像;

删除上一次的输入,再输入cat /sbin/init,按两次 TAB 键,如果出现一些 init 开头的文件,比如/sbin/init说明这个分区是/所在的分区;

如果没有出现/sbin/init文件,说明(hd0,1)分区仅仅是/boot分区而不是/分区。重新输入root (hd0,N)命令,这里 N 是某个 Linux 分区,然后再试cat /sbin/init, 直到屏幕上出现/sbin/init,说明你找到了/分区,严格来说,应该是/sbin目录所在的分区;

依次输入命令:

root (hd0,1)   /* 假设 /dev/hda2 是你的 /boot 所在的分区 */
kernel /boot/vmlinuz-2.6.15-26-386 ro dev=/dev/hda3    /* 假设 /dev/hda3 是你的 / 所在的分区 */
initrd /boot/initrd.img-2.6.15-26-386
boot

即可启动系统。

这里的关键问题是如何确定系统的几个分区:/boot / /sbin

mkbootdisk

mkbootdisk命令用来为当前运行的系统创建能够单独使用的系统引导软盘,以便在系统出现故障时能够启动操作进行适当的修复工作。

语法

mkbootdisk(选项)(参数)

选项

--device<设备>:指定设备;
--mkinitrdargs<参数>:设置mkinitrd的参数;
--noprompt:不会提示用户插入磁盘;
--verbose:执行时显示详细的信息;
--version:显示版本信息。

参数

内核:指定内核版本。

实例

mkbootdisk --device /dev/fd0 `uname -r`

其中,`uname -r`是目前Linux 系统所使用的核心版本,如果你有多个核心版本的话,你以可以直接输入核心版本。例如在这个网页中所使用的核心有两个版本,一个是2.2.12-20,另一个是2.2.18,若要以2.2.18设定开机的话,可以使用:

mkbootdisk --device /dev/fd0 2.2.18

vgdisplay

vgdisplay命令用于显示LVM卷组的信息。如果不指定"卷组"参数,则分别显示所有卷组的属性。

语法

vgdisplay(选项)(参数)

选项

-A:仅显示活动卷组的属性;
-s:使用短格式输出的信息。

参数

卷组:要显示属性的卷组名称。

实例

使用vgdisplay命令显示存在的卷组"vg1000"的属性。在命令行中输入下面的命令:

[root@localhost ~]# vgdisplay vg1000     #显示卷组"vg1000"的属性

输出信息如下:

  --- Volume group ---  
  VG Name               vg1000  
......省略部分输出内容......  
  free  PE / Size       50 / 200.00 MB  
  VG UUID  ICprwg-ZmhA-JKYF-WYuy-jNHa-AyCN-ZS5F7B

badblocks

badblock命令用于查找磁盘中损坏的区块。 硬盘是一个损耗设备,当使用一段时间后可能会出现坏道等物理故障。电脑硬盘出现坏道后,如果不及时更换或进行技术处理,坏道就会越来越多,并会造成频繁死机和数据丢失。最好的处理方式是更换磁盘,但在临时的情况下,应及时屏蔽坏道部分的扇区,不要触动它们。badblocks就是一个很好的检查坏道位置的工具。

语法

badblock(选项)(参数)

选项

-b<区块大小>:指定磁盘的区块大小,单位为字节;
-o<输出文件>:将检查的结果写入指定的输出文件;
-s:在检查时显示进度;
-v:执行时显示详细的信息;
-w:在检查时,执行写入测试。

参数

  • 磁盘装置:指定要检查的磁盘装置;
  • 磁盘区块数:指定磁盘装置的区块总数;
  • 启始区块:指定要从哪个区块开始检查。

实例

badblocks以4096的一个block,每一个block检查16次,将结果输出到“hda-badblocks-list”文件里。

badblocks -b 4096 -c 16 /dev/hda1 -o hda-badblocks-list

hda-badblocks-list是个文本文件,内容如下:

cat hda-badblocks-list
51249
51250
51251
51253
51254
……
61245
……

可以针对可疑的区块多做几次操作。下面,badblocks以4096字节为一个“block”,每一个“block”检查1次, 将结果输出到“hda-badblocks-list.1”文件中,由第51000 block开始,到63000 block结束。

badblocks -b 4096 -c 1 /dev/hda1 -o hda-badblocks-list.1 63000 51000

这次花费的时间比较短,硬盘在指定的情况下在很短的时间就产生“嘎嘎嘎嘎”的响声。由于检查条件的不同,其输出的结果也不完全是相同的。重复几次同样的操作,因条件多少都有些不同,所以结果也有所不同。进行多次操作后,直到产生最后的hda-badblock-list.final文件。

其他

1、fsck使用badblocks的信息

badblocks只会在日志文件中标记出坏道的信息,但若希望在检测磁盘时也能跳过这些坏块不检测,可以使用fsck的-l参数:

fsck.ext3 -l /tmp/hda-badblock-list.final /dev/hda1

2、在创建文件系统前检测坏道

badblocks可以随e2fsckmke2fs的-c删除一起运行(对ext3文件系统也一样),在创建文件系统前就先检测坏道信息:

mkfs.ext3 -c /dev/hda1

代码表示使用-c在创建文件系统前检查坏道的硬盘。

这个操作已经很清楚地告知我们可以采用mkfs.ext3 -c选项用read-only方式检查硬盘。这个命令会在格式化硬盘时检查硬盘,并标出错误的硬盘“block”。用这个方法格式化硬盘,需要有相当大的耐心,因为命令运行后,会一个个用读的方式检查硬盘。

fdisk

fdisk命令用于观察硬盘实体使用情况,也可对硬盘分区。它采用传统的问答式界面,而非类似DOS fdisk的cfdisk互动式操作界面,因此在使用上较为不便,但功能却丝毫不打折扣。

语法

fdisk(选项)(参数)

选项

-b<分区大小>:指定每个分区的大小;
-l:列出指定的外围设备的分区表状况;
-s<分区编号>:将指定的分区大小输出到标准输出上,单位为区块;
-u:搭配"-l"参数列表,会用分区数目取代柱面数目,来表示每个分区的起始地址;
-v:显示版本信息。

参数

设备文件:指定要进行分区或者显示分区的硬盘设备文件。

实例

首先选择要进行操作的磁盘:

[root@localhost ~]# fdisk /dev/sdb

输入m列出可以执行的命令:

command (m for help): m
Command action
   a   toggle a bootable flag
   b   edit bsd disklabel
   c   toggle the dos compatibility flag
   d   delete a partition
   l   list known partition types
   m   print this menu
   n   add a new partition
   o   create a new empty DOS partition table
   p   print the partition table
   q   quit without saving changes
   s   create a new empty Sun disklabel
   t   change a partition's system id
   u   change display/entry units
   v   verify the partition table
   w   write table to disk and exit
   x   extra functionality (experts only)

输入p列出磁盘目前的分区情况:

Command (m for help): p

Disk /dev/sdb: 3221 MB, 3221225472 bytes
255 heads, 63 sectors/track, 391 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1           1        8001   8e  Linux LVM
/dev/sdb2               2          26      200812+  83  Linux

输入d然后选择分区,删除现有分区:

Command (m for help): d
Partition number (1-4): 1

Command (m for help): d
Selected partition 2

查看分区情况,确认分区已经删除:

Command (m for help): print

Disk /dev/sdb: 3221 MB, 3221225472 bytes
255 heads, 63 sectors/track, 391 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System

Command (m for help):

输入n建立新的磁盘分区,首先建立两个主磁盘分区:

Command (m for help): n
Command action
   e   extended
   p   primary partition (1-4)
p    //建立主分区
Partition number (1-4): 1  //分区号
First cylinder (1-391, default 1):  //分区起始位置
Using default value 1
last cylinder or +size or +sizeM or +sizeK (1-391, default 391): 100  //分区结束位置,单位为扇区

Command (m for help): n  //再建立一个分区
Command action
   e   extended
   p   primary partition (1-4)
p 
Partition number (1-4): 2  //分区号为2
First cylinder (101-391, default 101):
Using default value 101
Last cylinder or +size or +sizeM or +sizeK (101-391, default 391): +200M  //分区结束位置,单位为M

确认分区建立成功:

Command (m for help): p

Disk /dev/sdb: 3221 MB, 3221225472 bytes
255 heads, 63 sectors/track, 391 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1         100      803218+  83  Linux
/dev/sdb2             101         125      200812+  83  Linux

再建立一个逻辑分区:

Command (m for help): n
Command action
   e   extended
   p   primary partition (1-4)
e  //选择扩展分区
Partition number (1-4): 3
First cylinder (126-391, default 126):
Using default value 126
Last cylinder or +size or +sizeM or +sizeK (126-391, default 391):
Using default value 391

确认扩展分区建立成功:

Command (m for help): p

Disk /dev/sdb: 3221 MB, 3221225472 bytes
255 heads, 63 sectors/track, 391 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1         100      803218+  83  Linux
/dev/sdb2             101         125      200812+  83  Linux
/dev/sdb3             126         391     2136645    5  Extended

在扩展分区上建立两个逻辑分区:

Command (m for help): n
Command action
   l   logical (5 or over)
   p   primary partition (1-4)
l //选择逻辑分区
First cylinder (126-391, default 126):
Using default value 126
Last cylinder or +size or +sizeM or +sizeK (126-391, default 391): +400M    

Command (m for help): n
Command action
   l   logical (5 or over)
   p   primary partition (1-4)
l
First cylinder (176-391, default 176):
Using default value 176
Last cylinder or +size or +sizeM or +sizeK (176-391, default 391):
Using default value 391

确认逻辑分区建立成功:

Command (m for help): p

Disk /dev/sdb: 3221 MB, 3221225472 bytes
255 heads, 63 sectors/track, 391 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1               1         100      803218+  83  Linux
/dev/sdb2             101         125      200812+  83  Linux
/dev/sdb3             126         391     2136645    5  Extended
/dev/sdb5             126         175      401593+  83  Linux
/dev/sdb6             176         391     1734988+  83  Linux

Command (m for help):

从上面的结果我们可以看到,在硬盘sdb我们建立了2个主分区(sdb1,sdb2),1个扩展分区(sdb3),2个逻辑分区(sdb5,sdb6)

注意:主分区和扩展分区的磁盘号位1-4,也就是说最多有4个主分区或者扩展分区,逻辑分区开始的磁盘号为5,因此在这个实验中试没有sdb4的。

最后对分区操作进行保存:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

建立好分区之后我们还需要对分区进行格式化才能在系统中使用磁盘。

在sdb1上建立ext2分区:

[root@localhost ~]# mkfs.ext2 /dev/sdb1
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
100576 inodes, 200804 blocks
10040 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=209715200
7 block groups
32768 blocks per group, 32768 fragments per group
14368 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840

Writing inode tables: done                           
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 32 mounts or
180 days, whichever comes first.  Use tune2fs -c or -i to override.

在sdb6上建立ext3分区:

[root@localhost ~]# mkfs.ext3 /dev/sdb6
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
217280 inodes, 433747 blocks
21687 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=444596224
14 block groups
32768 blocks per group, 32768 fragments per group
15520 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912

Writing inode tables: done                           
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 32 mounts or
180 days, whichever comes first.  Use tune2fs -c or -i to override.
[root@localhost ~]#

建立两个目录/oracle/web,将新建好的两个分区挂载到系统:

[root@localhost ~]# mkdir /oracle
[root@localhost ~]# mkdir /web
[root@localhost ~]# mount /dev/sdb1 /oracle
[root@localhost ~]# mount /dev/sdb6 /web

查看分区挂载情况:

[root@localhost ~]# df -h
文件系统              容量  已用 可用 已用% 挂载点
/dev/mapper/VolGroup00-LogVol00
                      6.7G  2.8G  3.6G  44% /
/dev/sda1              99M   12M   82M  13% /boot
tmpfs                 125M     0  125M   0% /dev/shm
/dev/sdb1             773M  808K  733M   1% /oracle
/dev/sdb6             1.7G   35M  1.6G   3% /web

如果需要每次开机自动挂载则需要修改/etc/fstab文件,加入两行配置:

[root@localhost ~]# vim /etc/fstab

/dev/VolGroup00/LogVol00 /                       ext3    defaults        1 1
LABEL=/boot             /boot                   ext3    defaults        1 2
tmpfs                   /dev/shm                tmpfs   defaults        0 0
devpts                  /dev/pts                devpts  gid=5,mode=620  0 0
sysfs                   /sys                    sysfs   defaults        0 0
proc                    /proc                   proc    defaults        0 0
/dev/VolGroup00/LogVol01 swap                    swap    defaults        0 0
/dev/sdb1               /oracle                 ext2    defaults        0 0
/dev/sdb6               /web                    ext3    defaults        0 0

vgcreate

vgcreate命令用于创建LVM卷组。卷组(Volume Group)将多个物理卷组织成一个整体,屏蔽了底层物理卷细节。在卷组上创建逻辑卷时不用考虑具体的物理卷信息。

语法

vgcreate(选项)(参数)

选项

-l:卷组上允许创建的最大逻辑卷数;
-p:卷组中允许添加的最大物理卷数;
-s:卷组上的物理卷的PE大小。

参数

  • 卷组名:要创建的卷组名称;
  • 物理卷列表:要加入到卷组中的物理卷列表。

实例

使用vgcreate命令创建卷组 "vg1000",并且将物理卷/dev/sdb1/dev/sdb2添加到卷组中。在命令行中输入下面的命令:

[root@localhost ~]# vgcreate vg1000 /dev/sdb1 /dev/sdb2  #创建卷组"vg1000"

输出信息如下:

Volume group "vg1000" successfully created